

New approaches for studying nanomaterials in food: focus on field-flow fractionation and spICP-MS

Dr. Marco Roman

ECSIN-ECAMRICERT SRL

Nanomaterials in the food sector: a growing market

○ Titanium dioxide ○ Silver ○ Silicon dioxide ○ Tungsten disulfide ○ Graphite ○ others

NanoFood Market

Applications

Nano-sized or nano-incapsulated additives

- Nanostructured ingredients
- Nano-improved food contact materials
- Nanotechnology-based devices (e.g. nano-filtration)
- Nanosensors

- Increased absorption and bioavailability
- Improved organolectic properties, consistence and aspect

Advantages

- Antimicrobial action
- Improved processing efficiency and safety
- Treachability of food conditions during transport and storage

- Prepared by EFSA scientific committee under request by EC
- Adopted April 6th 2011, published May 10th 2011
- Concerns risk assessment for the following classes of products/applications:
 - 1. direct consumption (human, cattle)
 - 2. farming (es. pesticides)
 - 3. food/feed contact materials
- Provides practical reccomendation for risk assessment in all agroindustrial sectors dealing with the use nanomaterials (included food/feed additives, enzymes, flavours, food contact materials, new foodstuff, pesticides)
- Addresses to those corcerned and risk assessers
- Rational decision process

European Food Safety Authority

Decision tree for exposure assessment

Nanomaterials in the food matrix

Nanomaterials in complex organic matrix are **never** expected to be like in the pristine form!

Food/feed

- Any kind of biological substance
- Food supplements

Food simulants Union Guidelines on Regulation EU 2014

- A Ethanol 10%
- B Acetic acid 3 %
- C Ethanol 20%
- D1 Ethanol 50%
- D2 Vegetal oil (Isooctane)

Which type of nanomaterial?

- Titanium dioxide TiO₂
- Amorphous silica SiO₂ E551 (Na-Al, Na-Ca silicates) (E552, E559)
- Metallic silver Ag
- Zinc oxide ZnO₂
- Nanoclays (cloisite, MMT)

E171 E551 (E552, E559) E174

Analytical tools

- Nanomaterials have multiple and interdependent physicochemical properties
- Nanomaterials are defined by their size: this is the main property to be determined, then quantity (chemical composition can be preparatory for both)

Dynamic light scattering

- Cheap, fast
- Wide size range (0.3 nm 10 µm)

- Poor overall sensitivity
- Big particles mask the presence of the smaller ones

Good for preliminary screening

Transmission electron microscopy

You see what you get!!

- Primary technique for regulatory testing
- Wide size range (0.2-0.3 nm to μm)
- Multi-property determination (size, morphology, composition by EDAX)
- Low sample size/representativity
- Difficulty to distinguish nanomaterials from the matrix
- Expensive

Good for final validation

Field-flow fractionation (FFF)

 Family of techniques for the physical separation of particles based on their hydrodinamic diameter

Asymmetric Flow Field-Flow Fractionation (AF4)

ICP-MS

Quantitative determination of elements from ppm to ppt levels

- Very high sensitivity
- High specificity

- No distinction between particles, dissolved species and matrix
- Expensive

Single particle (sp) ICP-MS

- Advantages of ICP-MS
- + Nanoparticles information:
- Number concentration
- Mass
- Size
- Mass concentration

Single particle (sp) ICP-MS

Silver nanoparticles (60 nm) in chicken meat

90000

80000

70000

60000 (cps)

50000

40000

30000

20000

10000 0

0

Signal

Interlaboratory comparison for spICP-MS method validation

Enzymatic digestion

Parameter	Conc. (mg/kg)	Trueness (%)	RSD _r (%)	RSD _{interlabr} (%)
Particle diameter	5	98	0,8	5,2
(n= 21)	10	98	1,2	5,6
	25	99	1,8	5
Particle number concentration	5	92	14	18
(n= 21)	10	95	9,6	12
	25	91	6,4	7,5
Particle mass concentration	5	101	11	16
(n= 21)	10	98	7,2	9,9
	25	100	6,7	8,9

Linearity range: 0.5 mg/kg – 50 mg/kg LOD 0.05 mg/kg

Multi-technique approaches offer the most complete and robust information:

Combined techniques *off-line* Coupled techniques *on-line*

Silver nanoparticles (40 nm) in chicken meat

AF4-ICP-MS (coupled)

- Hydrodynamic diameter
- Size distribution based on mass concentration

Fractions collection

spICP-MS (combined)

- Mass-equivalent diameter
- Size distribution based on number concentration

Combined and coupled techniques

Silica nanoparticles (12 nm) in commercial coffee creamer

Sample defatting (solvent extraction)

AF4-ICP-MS (coupled)

- Hydrodynamic diameter
- Size distribution based on mass concentration

Fractions collection

TEM-EDAX (combined)

- Geometric diameter
- Morphology
- Elemental composition

500000

Heroult et al., 2014

AF4-spICP-MS (coupled)

Silver nanoparticles in water (EPA)

HDC-spICP-MS (coupled)

Silver nanoparticles in blood

Silica nanoparticles (20, 40, 60, 80, 100, 150 nm) standard suspensions

Barahona et al, 2016

THANK YOU FOR THE ATTENTION

Contact: <u>ecsin@ecamricert.com</u> Tel.: +39 0425 377 501 Cell.:+39 328 4078435